Vector Hazard Report: Insecticide Resistance and Malaria Vectors of Ghana

Notes on the biology, distribution and identification of malaria vectors of Ghana and reported insecticide resistance.

Last Updated by David Pecor September 2021
Preface

Vector Hazard Reports are a product of the Walter Reed Army Institute of Research / Walter Reed Biosystematics Unit (WRAIR-WRBU)

This document provides summarized information on the vectors of malaria reported from Ghana as of September, 2021. Information related to the identification, distribution, medical importance, control and surveillance of malaria vector species are included. Each page of this document is also hyperlinked via the table of contents to allow easy navigation and access to information most relevant to the reader. View the Vector Hazard Report Quick Guide on page 3 for real-time threat assessment resources, quick navigation to vector-borne disease travel alerts in Ghana and resources for vector identification and the most current insecticide resistance surveillance data. Further details on each vector species covered in this report are available via the WRBU website or by selecting the ‘WRBU Species Profile’ links on each species summary. The target audience for this document are commanders, medical planners, preventive medicine personnel, and particularly medical entomologists. For each vector species threat included in this report, the following information is provided:

- **Current Taxonomy**
- **Bionomics**
- **Vector Status**
- **Identification Tools**
- **Surveillance and Control Strategies**
- **Additional Resources**

Insecticide resistance testing is generally performed by either a CDC or WHO bottle assay which are experiments designed to expose mosquitoes to different pesticides and recording the diagnostic dose (DD) and diagnostic time (DT). Some IR testing involves screening extracted DNA from mosquito specimens to identify knock-down resistance genes, and other genetic mutations (kdr\-w, kdr\-e and ace\-1) by PCR. IR testing results from all the aforementioned methods are included in this report from mosquito specimens collected in Ghana and are compiled from the following sources:

- [VectorMap](#)
- [VectorBase](#)
- [IR Mapper](#)

Disclaimer:

Material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author, and are not to be construed as official, or as reflecting true views of the Department of the Army or the Department of Defense.
Vector Hazard Report Quick Guide: Ghana

Real-Time Threat Assessment Resources
Visit these websites for regularly updated information about current vector-borne disease threats and questions about insecticide use

| U.S. Dept. of State Travel Alerts |
| Health.mil Reports |
| CDC Current Outbreaks List |
| WHO Outbreak News |
| HealthMap Outbreaks |
| DoD Pesticide Hotline & Pesticide Use Reporting |

Additional Resources

| WHO Country Profile: Ghana |
| CDC Travelers Guide: Ghana |
| DoD Insect Repellent System |

Vector Identification Resources

<table>
<thead>
<tr>
<th>Vector</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosquito</td>
<td>WRBU Pictorial Key to the Medically Important Mosquitoes of AFRICOM</td>
</tr>
</tbody>
</table>

Insecticide Resistance Resources

| APHC Pesticide Use and Resistance Monitoring |
| Test procedures for insecticide resistance monitoring in malaria vector mosquitoes (WHO) |
| Bottle Assay for Insecticide Resistance (CDC) |
Table of Contents

I. **Background**

II. **Surveillance and Control**

III. **Malaria Distribution**

IV. **Vector Species Profiles:**
 - *Anopheles gambiae*
 - *Anopheles arabiensis*
 - *Anopheles coluzzii*
 - *Anopheles melas*
 - *Anopheles funestus*
 - *Anopheles brunnipes*
 - *Anopheles coustani*
 - *Anopheles demeilloni*
 - *Anopheles freetownensis*
 - *Anopheles hancocki*
 - *Anopheles nili*
 - *Anopheles pharoensis*
 - *Anopheles paludis*
 - *Anopheles rufipes*
 - *Anopheles wellcomei*
 - *Anopheles ziemanni*

V. **Insecticide Resistance Detected**
 - *Anopheles coluzzii*
 - *Anopheles funestus*
 - *Anopheles gambiae s.l.*
 - Spotlight: Increased Resistance: Deltamethrin

VI. **Additional Resources**
 - Personal Protective Measures
 - References
Background

Malaria in Ghana

According to the World Health Organization (WHO), 2% of global malaria cases and 3% of global malaria deaths occur in Ghana. However, Ghana has made progress since 2016 to reduce malaria cases by over 30% by implementing a combination of insecticides, rapid diagnostic testing, anti-malaria drugs and increased training for health workers to diagnose and treat malaria.

The entire population faces some risk of malaria transmission throughout the year. Generally, seasonality of malaria transmission differs between the north and south. In the north, there is a longer season from July to November, except in the farthest regions to the north where this season is only 3 to 4 months long. In the south, malaria transmission peaks at two points during the year, from May to June and again from October to November.

Insecticide Resistance in Ghana

In Ghana, the most common methods used to reduce malaria cases are indoor residual spraying (IRS) and long lasting insecticide treated Nets (LLITN). Although these interventions have proven extremely effective at reducing overall malaria burden, they have also proven an effective way to increase insecticide resistance in local mosquito populations. Vector control puts selection pressure on mosquito populations and resistance is favored when pressure is applied via insecticide applications.

Options for insecticide use are also limited, with only 4 classes of insecticides currently widely available (organochlorines, organophosphates, pyrethroids and carbamates). Without the use of alternative pesticides or non-chemical vector control methods, resistance levels will increase overtime, reducing the effectiveness of malaria reduction campaigns. Of particular concern are rising levels of pyrethroids as this class is most commonly used for LLITN and treated fabrics. Further compounding the issue, insecticides used to prevent agriculture pests are also impacting mosquito populations and contributing to overall resistance rates.

References

USAID President’s Malaria Initiative FY 2020 Ghana Malaria Operational Plan

For additional information about malaria surveillance and suppression consult the US Army Public Health Command (APHC) and Armed Forces Pest Management Board (AFPMB):

- All APHC Resources
- APHC TG 336—Malaria Field Guide
- APHC FactSheet: Malaria
- All AFPMB Technical Guides
- AFPMB TG 13—Dispersal of Ultra Low Volume (ULV) Insecticides by Cold Aerosol and Thermal Fog Ground Application Equipment
Vectors of Malaria: Anopheles spp.

Vector Surveillance and Suppression: CO2 baited light traps are commonly used to collect Anopheles mosquitoes, but not all Anopheles spp. are detected in light trap collections. Animal or human baited traps are quite useful for determining feeding preferences of local mosquito populations, however may require the use of human use protocols. Adults are often collected from indoor and outdoor resting sites by aspiration. Systematic larval dipping provides valuable insights into species-specific habitat that can be used to inform larval breeding site reduction plans. The Armed Forces Pest Management Board (AFPMB) advises that effective malaria suppression requires the elimination of gametocytes from the blood stream of the human reservoir population, reduction of larval and adult Anopheles mosquito populations, use of personal protective measures such as skin repellents, permethrin impregnated uniforms and bed nets to prevent mosquito bites, and chemoprophylaxis to prevent infection. Application of residual insecticides to the interior walls of buildings and sleeping quarters is an effective method of interrupting malaria transmission when local vectors feed and rest indoors. Nightly dispersal of ultra low volume (ULV) aerosols can reduce exophilic mosquito populations. Larvicides and biological control with predaceous fish can control larvae at their aquatic developmental sites before adults emerge and disperse. For more information about Insecticides used for mosquito control consult the AFPMB Technical Guide No. 48, Contingency Pest Management and Vector Surveillance (CAC required). Chemical control may be difficult to achieve in some areas. After decades of malaria control, many vector populations are now resistant to insecticides. Sanitary improvements, such as filling and draining areas of impounded water to eliminate breeding habitats, should be used to the extent possible. The use of bed nets impregnated with a synthetic pyrethroid, preferably permethrin, is an extremely effective method of protecting sleeping individuals from mosquito bites. Buildings and sleeping quarters should be screened to prevent entry of mosquitoes and other blood-sucking insects. The interior walls of tents and bunkers can be treated with permethrin to control resting vectors.

Vector Identification:

- LUCID Pictorial Key to the Medically Important Mosquitoes of AFRICOM

Additional Resources:

Malaria Distribution: Africa

Malaria cases have declined across Africa in recent decades, but it remains a significant threat.

Malaria incidence among children (2-15) from 2000 compared to 2015, maps from: Malaria Atlas Project.
Malaria Distribution: Ghana

Malaria cases per 100k people, from: [WHO World Malaria Report, 2020](https://www.who.int/publications/i/item/9789241513138).

[Back to table of contents](#)
Anopheles (Cellia) gambiae Giles, 1902

Notes on Taxonomy:
The Gambiae Complex is comprised of 8 formally described species (Anopheles amharicus, An. arabiensis, An. coluzzii, An. gambiae s.s., An. melas, An. merus, and An. quadriannulatus). Members of the complex can be difficult to identify to species-level without molecular identification tools. Due to this limitation, much of the literature and surveillance data available only identifies these specimens as Anopheles gambiae s.l. The nominotypical member of the complex, An. gambiae, has been widely detected in Ghana, as well as An. arabiensis, An. coluzzii and An. melus.

Bionomics:
Anopheles gambiae s.s. is known as the most dangerous animal in the world. It is the dominant malaria vector in the Afrotropical region and is highly anthropophilic. An. gambiae s.s. has been found on sticky traps 40-240 m above the ground, giving the impression that it uses long-distance migration as a potential strategy of survival. These species occur in a great variety of types of water; the most striking are the shallow, open sun-lit pools. Females readily enter houses and bite man both indoors and outdoors starting at sunset and peaking just at dawn.

Medical Importance:
Anopheles gambiae is a vector of Plasmodium falciparum, P. gallinaceum, P. malariae and P. ovale.

WRBU Species Profile

Anopheles (Cellia) arabiensis Patton, 1905

Bionomics:

Anopheles arabiensis larvae are found in relative short duration, sunlit water pools (3-5 weeks) with high turbidity and a lack of aquatic vegetation or surface film. Chosen breeding sites appear to be associated with cattle, their preferred host. Although primarily known to occur in dry-savannah type environments, *An. arabiensis* is also found in forested areas that have been recently disturbed or cleared. Bitting and resting behavior of adult female *An. arabiensis* is known to be highly variable. Adults are known to be both anthropophilic and zoophilic depending on the availability of blood meals. This species is also known to modify resting behavior when in contact with some insecticides used during Indoor Residual Spraying (IRS) control measures. In west Africa, *An. arabiensis* populations are present throughout the year and many individuals may survive through the dry season.

Medical Importance:

Anopheles arabiensis is a vector of *Plasmodium falciparum* and *P. vivax*.

WRBU Species Profile

Anopheles (Cellia) coluzzii Coetzee & Wilkerson 2013

Bionomics:

Anopheles coluzzii larvae are found in more permanent breeding sites often the result of human activity (agriculture, ditches, etc.). In Burkina Faso, larger numbers were reported during the raining season vs the cold, dry season.

Medical Importance:

Anopheles coluzzii is a vector of *Plasmodium falciparum*, *P. vivax* and *P. berghei*.

WRBU Species Profile

Anopheles (Cellia) melas (Theobald, 1903)

Bionomics:

Anopheles melas larvae are found in coastal, saltwater pools and mangrove swamps. In Senegal, An. melas were observed to feed only a short distance from the larval breeding site. This study also characterized An. melas as more zoophilic and exophilic than An. gambiae s.s.

Medical Importance:

Anopheles melas is a vector of Plasmodium falciparum.

WRBU Species Profile

Anopheles (Cellia) funestus Giles, 1900

Bionomics:

In most parts of its range, *Anopheles funestus* breeds characteristically in bodies of clear water that are either large and more or less permanent, e.g. swamps (near edges if deep), weedy sides of streams, rivers, furrows or ditches, protected portions of lake shore, ponds, or water such as seepages, which are fed from underground permanent sources. It is one of the most anthropophilic mosquitoes known. *Anopheles funestus* is also strongly endophilic, resting indoors after blood meals. The great bulk of feeding takes place inside houses after 22:00h up to dawn with peak biting between 0300 to 0500.

Medical Importance:

Anopheles funestus is a vector of *Plasmodium falciparum* and *P. vivax.*

WRBU Species Profile

Anopheles (Cellia) brunnipes (Theobald, 1910)

Bionomics:

Anopheles brunnipes is rarely encountered in relation to other *Anopheles* spp. occurring in West Africa. It has not been formally incriminated as a malaria vector, however specimens identified as *An. brunnipes* have been found with salivary infections of *Plasmodium* spp.

Medical Importance:

Anopheles brunnipes is a suspected vector of *Plasmodium* spp.

WRBU Species Profile

References:

Anopheles (Anopheles) coustani Laveran, 1900

Bionomics:

Anopheles coustani is generally regarded as primarily zoophilic, however, *An. coustani* has been observed to opportunistically feed on humans and play a role in malaria transmission during the rainy season when population numbers peak. Larvae have been collected in swamps, irrigation ditches and drainage pools.

Medical Importance:

Anopheles coustani is a vector of *Plasmodium falciparum*.

WRBU Species Profile

Anopheles (Cellia) demeilloni Edwards, 1929

Bionomics:

Larvae of *An. demeilloni* have been collected in streams and natural ground pools. Adult females are primarily exophagic and are collected in far less numbers compared to *An. gambiae* s.l. and *An. funestus* s.l.

Medical Importance:

Anopheles demeilloni is a vector of *Plasmodium falciparum*.

WRBU Species Profile

Anopheles (Cellia) freetownensis Evans, 1925

Medical Importance:

Anopheles freetownensis is a vector of *Plasmodium falciparum* and *P. vivax*.

WRBU Species Profile

Anopheles (Cellia) hancocki Edwards, 1929

Bionomics:

Anopheles hancocki females will readily feed on humans indoors but opportunistically on other mammal hosts. Larvae have been collected in natural water sources in low-lying areas such as lakes or swamps.

Medical Importance:

Anopheles hancocki is a vector of *Plasmodium falciparum*.

WRBU Species Profile

Anopheles (Cellia.) nili (Theobald, 1904)

Notes on Taxonomy:
The Nili Complex is made up of 4 formally described species (An. nili, An. carnevalei, An. ovengensis and An. somalicus). Anopheles nili s.s. has been reported from Ghana with other members (An. somalicus and An. carnevalei) also reported, but not suspected to play a major role in malaria transmission.

Bionomics:
Anopheles nili s.s. is principally a stream breeder with larvae being found in vegetation or in dense shade along the edges of streams and large rivers. It is known to be an anthropophilic species biting man readily indoors and outdoors and frequently resting indoors by day. Other members of this complex are known to be forest feeders who are primarily zoophilic but will opportunistically feed on man.

Medical Importance:
Anopheles nili is a vector of Plasmodium falciparum.

WRBU Species Profile
Anopheles (Cellia) pharoensis Theobald, 1901

Bionomics:

Primarily a species of large vegetated swamps, but is also found along lake shores and among floating plants, such as *Pistia* and *Potamogeton*. It’s also found in reservoirs, rice fields, streams, ditches, and overgrown wells. They feed from dusk to dawn with a peak at about 01:00 and will enter homes to feed. *Anopheles pharoensis* is an opportunistic feeder.

Medical Importance:

Anopheles pharoensis is a vector of *Plasmodium falciparum*.

WRBU Species Profile

[Back to table of contents]
Anopheles (Anopheles) paludis Theobald, 1900

Bionomics:

Anopheles paludis adult females are endophagic but will often elude pyrethrum spray catches as they are exophilic. Although this species is not thought to play a major role in malaria transmission, it has been observed to readily bite humans.

Medical Importance:

Anopheles paludis is considered a secondary vector of *Plasmodium falciparum*.

WRBU Species Profile

Anopheles (Cellia) rufipes (Gough, 1910)

Bionomics:

Anopheles rufipes females are found both indoors and outdoors in rural and urban environments. It will readily bite humans but will also feed on domesticated livestock such as cows, sheep, pigs, chickens and horses. A recent study in neighboring Cameroon suggests *An. rufipes* prefers to enter homes to feed but exit and rest outside after taking a blood meal.

Medical Importance:

Anopheles rufipes is a vector of *Plasmodium falciparum*.

WRBU Species Profile

Anopheles (Cellia) wellcomei Theobald, 1904

Bionomics:

Anopheles wellcomei females will readily enter homes in search of blood meals and prefer to rest indoors. They have been observed in large numbers in West Africa, occasionally outnumbering *An. gambiae* and *An. funestus*.

Medical Importance:

Anopheles wellcomei is considered a secondary vector of *Plasmodium falciparum*.

WRBU Species Profile

Anopheles (Anopheles) ziemanni Grünberg, 1902

Bionomics:

Anopheles ziemanni is an important local malaria vector across West Africa. Although not found universally across the region, where it occurs it is the dominant species and plays the most significant role in malaria transmission. An aggressive biter, *An. ziemanni* has been observed primarily feeding outdoors (exophagic and endophilic).

Medical Importance:

Anopheles ziemanni is a vector of *Plasmodium falciparum*.

WRBU Species Profile

Insecticide Resistance Detected: *Anopheles coluzzii*

Data Sources:
VM all *An. coluzzii* s.l.
IR Mapper (*Anopheles coluzzii*)
VectorBase (*Anopheles coluzzii*)
Insecticide Resistance Detected: *Anopheles funestus*

Data Sources:
VM (*Anopheles funestus* + Ghana)
IR Mapper (*Anopheles funestus*)
VectorBase (*Anopheles funestus*)
Insecticide Resistance Detected: Anopheles gambiae s.l.

Data Sources:
VM all An. gambiae s.l.
IR Mapper (Anopheles gambiae)
VectorBase (Anopheles gambiae)
A recent study investigated insecticide resistance screening results from mosquitoes collected across West Africa from 2005 to 2017 in order to predict the change in prevalence overtime. A key finding was that resistance to all pyrethroids dramatically increased. For deltamethrin specifically, it was observed that in 2005 resistance was thought to occur across only 15% of the region and increased to 98% by 2017. Resistance rates appear to be highest in Liberia, Cote d’Ivorie and Ghana.

References:

Personal Protective Measures

Field Uniform: Personal protective measures are the first line of defense against arthropod-borne disease and, in some cases, may be the only protection for deployed military personnel. Proper wearing of the uniform and appropriate use of repellents can provide high levels of protection against blood-sucking arthropods. The uniform fabric provides a significant mechanical barrier to mosquitoes and other blood-sucking insects. Therefore, the uniform should be worn to cover as much skin as possible if weather and physical activity permit. Proper wearing of the field uniform is essential to minimize skin exposure (Figure 2-1). If the risk of heat stress is a factor in a particular environment, common sense or advice from medical or Preventive Medicine personnel should dictate when the following recommendations are not practical:

1. Tuck pant legs into boots or into socks. This forces non-flying pests, such as ticks, chiggers, stinging ants and spiders, to climb up the outside of the pant legs, thus decreasing access to the skin and increasing the likelihood of their being seen.

2. Roll sleeves down and close the collar to help protect the arms and neck from arthropod attack. This is especially important in malaria-endemic regions when Anopheles species bite from dusk until dawn.

3. It is difficult for pests to bite through the uniform fabric unless it is pulled tightly against the skin. Therefore, the uniform should be worn loosely, with an undershirt worn underneath the coat to act as an added barrier. The undershirt should be tucked into the pants to decrease access by crawling arthropods at the waistline. Mosquitoes can easily bite through tight-fitting material such as that used for the combat uniform.

4. The field cap and its brim help protect the head and face. Some biting insects tend to avoid the shaded area of the face under the cap's brim.

5. Uniforms that are treated with permethrin provide protection only on the covered portion of the body. Mosquitoes will still readily feed on the hands, neck and head. It is essential to apply an approved insect repellent to exposed body surfaces. Reapplication is advised according to the label.

For more information on personal protective measures, consult **AFPMB Technical Guide No. 36: Personal Protective Measures Against Insects and Other Arthropods of Military Significance.**
References

Additional Resources:

- # 1 Cause of Death in Ghana is Malaria
- CDC Travelers Health
- WHO Global Health Observatory:
- WHO Map Gallery
- CIA FactBook

References

References

