Vector Hazard Report: West Africa

Part 2: Sand Flies, Ticks and Host Densities

Information gathered from products of The Walter Reed Biosystematics Unit (WRBU)

Catalog of Subfamily Phlebotominae

All material in this brief is provided for your information only and may not be construed as medical advice or instruction. No action or inaction should be taken based solely on the contents of this information; instead, readers should consult appropriate health professionals on any matter relating to their health and well-being.
Table of Contents

1: **Sand Fly-borne Diseases**
 - Cutaneous Leishmaniasis
 - Visceral Leishmaniasis
 - Habitat Suitability Models
 - Notes on Medically Important Sand Flies

2: **Tick Vectors**
 - Habitat Suitability Models

3: **Host Densities**
 - Human population density
 - Domestic animal population density
Sand Fly-borne Diseases

Contents:

1. Sand Fly-borne Pathogens:
 - Cutaneous Leishmaniasis
 - Visceral Leishmaniasis

2. Vector Habitat Suitability Models:
 - Phlebotomus duboscqi
 - Phlebotomus orientalis
 - Sergentomyia adleri
 - Sergentomyia affinis
 - Sergentomyia africana
 - Sergentomyia antennata
 - Sergentomyia bedfordi
 - Sergentomyia clydei
 - Sergentomyia ingrami
 - Sergentomyia schwetzi

3. Notes on Medically Important Sand Flies

Back to Table of Contents
Estimates of Cutaneous Leishmaniasis Incidence, 2012

[Map showing incidence of cutaneous leishmaniasis across different regions with color coding for no data, absent, present, cases reported, and historically endemic areas.]
Estimates of Visceral Leishmaniasis Incidence, 2012
Visceral Leishmaniasis Endemic Areas, WHO 2010
Habitat suitability models: Sand Fly Vectors
Habitat suitability model: *Phlebotomus duboscqi*
Habitat suitability model: *Phlebotomus orientalis*
Habitat suitability model: *Sergentomyia adleri*
Habitat suitability model: *Sergentomyia affinis*
Habitat suitability model:
Sergentomyia africana
Habitat suitability model: *Sergentomyia antennata*
Habitat suitability model:
Sergentomyia bedfordii
Habitat suitability model:
Sergentomyia clydei
Habitat suitability model:
Sergentomyia ingrami
Habitat suitability model: *Sergentomyia schwetzi*
Medical Importance

Phlebotomus orientalis
The vector of *L. donovani* (or *L. archibaldi*) and main man-biter in the Acacia-Balonites forests of Sudan (Hoogstraal & Heyneman, 1969; Killick-Kendrick, 1990).

Phlebotomus duboscqi

Sergentomyia antennata
Frequently found infected with untyped promastigotes in Kenya, where it is abundant in termite hills and sometimes feeds on mammals (Kaddu, 1986; Mutenga, 1986; Mutenga et al., 1986a,b).

Sergentomyia clydei
Recorded feeding on mammals (including barks and man) in Chad, Nigeria, Sudan and Kenya, where frequently found infected with untyped promastigotes and believed to be the principal vector of Sauroleishmania adleri (Abonnenc, 1972; Kaddu, 1986; Minter & Wijers, 1963; Mutenga, 1986; Southgate & Manson-Bahr, 1967). Suspected vector of *S. hoogstraali* in Sudan and found infected with Trypanosoma sp. in Senegal (Desjeux & Waroquy, 1981; Williams & Coelho, 1978).

Sergentomyia ingrami
Untyped promastigote infections found in Kenya (Kaddu, 1986), some of which produced lesions characteristic of *L. major* when inoculated into mice (Mutenga et al., 1986a).

Sergentomyia adleri
Recorded biting man in Sudan and near termite hills in Kenya, where found infected with untyped promastigotes (Abonnenc, 1972; Mutenga, 1986; Mutenga et al., 1986a). Recorded as vector of Trypanosoma sp. in Senegal (Desjeux & Waroquy, 1981).

Back to Table of Contents
Medical Importance

Sergentomyia affinis
Recorded feeding on man, as well as on reptiles, in Guinea and Kenya, where found infected with untyped promastigotes (Abonnenc, 1972; Kaddu, 1986; Mutinga, 1986).

Sergentomyia africana
Geographical character variation noted by Rioux et al. (1975). Untyped promastigote infections found in Kenya (Kaddu, 1986).

Sergentomyia bedfordi
A polytypic species recorded from a wide range of habitats, including termite hills and houses, and (in Kenya) frequently recorded biting man and infected with untyped promastigotes (Abonnenc, 1972; Kaddu, 1986; Minter, 1964; Mutinga, 1986). Recorded as vector of Sauroleishmania adleri in Kenya and of Tryoeanosooea boueti in Ethiopia (Heisch et al., 1956; Williams & Coelho, 1978).

Sergentomyia antennata
Frequently found infected with untyped promastigotes in Kenya, where it is abundant in termite hills and sometimes feeds on mammals (Kaddu, 1986; Mutinga, 1986; Mutinga et al., 1986a,b).

Sergentomyia schwetzi
Recorded biting man in West Africa (Abonnenc, 1972) and Kenya, where frequently found infected with untyped promastigotes and common in termite hills as well as houses (Kaddu, 1986; Minter & Wijers, 1963; Mutinga, 1986). Recorded as vector of Trypanosoma sp. in Senegal (Desjeux & Waroquy, 1981).
Tick Vectors

Habitat Suitability Models:

Amblyomma arboreus
Amblyomma boueti
Amblyomma compressum
Amblyomma transversale
Dermacentor circumguttatus
Hyalomma dromedarii
Hyalomma hoodi
Hyalomma moreli
Hyalomma paraleachi
Ixodes aulacodi
Ixodes moreli
Ixodes nchisiensis
Habitat suitability models: Tick Vectors
Habitat suitability model:
Amblyomma arboreus
Habitat suitability model:
Amblyomma boueti
Habitat suitability model:
Amblyomma compressum
Habitat suitability model:
Amblyomma transversale
Habitat suitability model: *Dermacentor circumguttatus*
Habitat suitability model: *Hyalomma dromedarii*
Habitat suitability model: *Hyalomma hoodi*
Habitat suitability model: *Hyalomma moreli*
Habitat suitability model:
Hyalomma paraleachi
Habitat suitability model: *Ixodes aulacodi*
Habitat suitability model: *Ixodes moreli*
Habitat suitability model: *Ixodes nchisiensis*
Host Densities

Contents:

1. Human population density
2. Domestic animal population density
Host Densities, Food and Agriculture Organization of the United Nations, 2005

Cows per sq. km

Sheep per sq. km

Goats per sq. km

Poultry per sq. km

Back to Table of Contents
References

Sand Flies
Environmental distance model for Sergentomyia adleri, Dornak, L. 2012.
Maxent model for Sergentomyia affinis, Dornak, L. May, 2012.
Maxent model for Sergentomyia africana, Dornak, L. May, 2012.
Maxent model for Phlebotomus alexandri, Dornak, L. April, 2012.
Maxent model for Sergentomyia bedfordi, Dornak, L. April, 2012.
Maxent model for Phlebotomusbergeroti, Dornak, L. April, 2012.
Maxent model for Sergentomyia clydei, Dornak, L. April, 2012.
Maxent model for Phlebotomus duboscqi, Dornak, L. May, 2012.
Maxent model for Sergentomyia ingrami, Dornak, L. April, 2012.
Maxent model for Phlebotomus orientalis, Dornak, L. April, 2012.
Maxent model for Sergentomyia schwetzi, Dornak, L. December, 2011.

Ticks
Maxent model for Amblyomma arboreus, Dornak, L. August, 2012.
Maxent model for Amblyomma compressum, Dornak, L. November, 2011.
Maxent model for Dermacentor circumguttatus, Dornak, L. November, 2011.
Maxent model for Hyalomma dromedarii, Dornak, L. August, 2012.
Maxent model for Hyalomma hooidi, Dornak, L. November, 2011.
Maxent model for Hyalomma moreli, Dornak, L. November, 2011.
Maxent model for Hyalomma paraleachi, Dornak, L. November, 2011.
Maxent model for Ixodes nchisiensis, Dornak, L. August, 2012.
The Walter Reed Biosystematics Unit is part of the Walter Reed Army Institute of Research and is based at the Smithsonian Institution Museum Support Center. To access taxonomic keys, the Systematic Catalog of Culicidae or to learn more about WRBU visit www.wrbu.org.

VectorMap is only as good as the data you provide. If you have collection records, models or pathogen testing results please contact the VectorMap team to learn how to contribute data at mosquitomap@si.edu.

Vector Photos Courtesy of Judith Stoffer, Walter Reed Biosystematics Unit, Graham Snodgrass U.S. Army Public Health Command and the Armed Forces Pest Management Board

The published material reflects the views of the authors and should not be construed to represent those of the Department of the Army or the Department of Defense.